Diabetes drug shows promise in treatment of neurodegenerative disease

A drug used to control Type II diabetes can help repair the spinal cords of mice suffering from the inherited disease adrenoleukodystrophy which, untreated, leads eventually to a paralysis, a vegetative state and death. This is an important step along the road to the development of a therapy for the human disease for which current treatment options are scarce and only partially effective, the annual conference of the European Society of Human Genetics will hear tomorrow (Sunday). The research is published simultaneously on line in the journal Brain.

Ads by Google

5 Signs of Alzheimer's - Doctor: 5 Warning Signs You're About to Get Alzheimer's Disease - www.newsmax.com

Professor Aurora Pujol, a research professor for the Catalan Body ICREA, working as Director of the Neurometabolic Diseases Laboratory at IDIBELL, Barcelona, Spain, investigated the role of mitochondria, the power plant of the cell, in adrenoleukodystrophy, a disease caused by the inactivation of the ABCD1 transporter of in peroxisomes. This inactivation leads to the accumulation of fatty acids in organs and , and causes spinal cord degeneration.

"ABCD1 is a protein located in the peroxisomes, compartments of the cell that detoxify chemicals and lipids, and thus the implication of mitochondria in such a disease was not obvious. But we knew from recent research that oxidative stress – where there is increased production of chemically active oxygen-containing molecules, and also significant decrease in the effectiveness of the body's antioxidant defences – was involved. We also knew that bioenergetic failure appeared before disease symptoms. We therefore decided to investigate the role of the mitochondria", Professor Pujol will say.

The group of diseases known as are characterised by progressive loss of the myelin sheath, the fatty covering that acts as an around nerve fibres. Damage to the myelin sheath impairs the conduction of signals in the affected nerves and leads to locomotor problems.

"We knew that early oxidative damage and bioenergetic dysfunction underlay the late onset degeneration of observed in the mouse model of X-linked adrenoleukodystrophy (X-ALD), the most frequently inherited leukodystrophy, so we looked at mitochondria for further clues. We found that the X-ALD mice showed a loss of mitochondria at 12 months of age, prior to disease symptoms, so this could not be a consequence of the disease, but rather a contributing factor. We also knew that the pathway involved in the mitochondrial loss could be treated by the use of the diabetes drug pioglitazone, so we decided to test its effect in the mice", Professor Pujol will say.